Improved efficiencies in organic light emitting diodes made with CdSe/ZnS quantum dots and a semiconducting polymer.
نویسندگان
چکیده
In this study, we report the fabrication and characterization of organic/inorganic hybrid polymer light emitting diodes (PLEDs) made with ZnS-capped CdSe core/shell type nanocrystals and a light-emitting polymer poly[2-phenyl-3-(9,9-dihexylfluoren-2-yl)-1,4-phenylene vinylene]-co-[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. The device using pristine polymer as active layer emitted yellow light with a maximum brightness of 3949 cd/m2 and maximum external quantum efficiency of 0.27 cd/A at 10 V. After blending with the CdSe/ZnS quantum dots (QDs), the device showed a much higher brightness of 8192 cd/m2 and external quantum efficiency of 1.27 cd/A at 7 V, while the driving voltage was lowered. The experimental results revealed that CdSe/ZnS QDs act as a hole-blocker in the devices. More efficient electron-hole recombination process inside polymer layer results in large improvement in luminescence and efficiency.
منابع مشابه
Critical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes.
Here we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatele...
متن کاملHybrid light-emitting diodes from anthracene-contained polymer and CdSe/ZnS core/shell quantum dots
In this paper, we added CdSe/ZnS core/shell quantum dots (QDs) into anthracene-contained polymer. The photoluminescent (PL) characteristic of polymer/QD composite film could identify the energy transitions of anthracene-contained polymer and QDs. Furthermore, the electroluminescent (EL) characteristic of hybrid LED also identifies emission peaks of blue polymer and QDs. The maximum luminescence...
متن کاملThin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملShifting the light emitting component from core to shell: an effective approach to improve the efficiency of light-emitting diodes based on multi-junction quantum materials.
Herein, using the light emitting component as the inner shell, we construct an advanced quantum-dot-quantum-well structure, ZnCdS/CdSe/CdZnSeS/ZnS, and use it for the fabrication of a light-emitting-diode. In comparison with the device containing conventional structured quantum dots, CdSe/CdZnSeS/ZnS, the advanced device possesses a superior performance in aspects of luminance, current efficien...
متن کاملP-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice
Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2009